

Machine Learning-Based Forecasting of Study Completion in Oncology Trials

MGIntelligence

- Accelerating drug discovery with cutting-edge generative AI
- Empowering pharma R&D through predictive analytics & quantum insights
- Designing novel molecules with Al-guided creativity
- Predicting clinical trial outcomes with data-driven accuracy
- Optimizing real-world performance across the drug lifecycle
- One unified platform for Al-powered innovation in healthcare

MGIntelligence empowers researchers, biotech firms, and pharma leaders to make faster, smarter decisions-with AI at the core.

Objective

Develop an AI model to predict the final status of oncology clinical trials using structured metadata (e.g., sponsor, phase, enrollment, intervention, location).

Why It Matters

Clinical trial failure is costly — up to 50% fail due to design flaws, recruitment issues, or feasibility challenges.

Al-driven early prediction empowers stakeholders to:

- Accelerate drug development
- Reduce R&D costs
- Prioritize high-potential trials
- Optimize trial design & site selection
- Support smarter investment decisions

Data Source

- Source- ClinicalTrials.gov The largest publicly accessible database for clinical trials
- Total Studies: 282 oncology trials (CAR-T related)
- Therapeutic Area: Multiple Myeloma
- Geography: Global (multi-country trial data)

Sample Data

					Primary Completion		
Conditions	Interventions	Sponsor	Phases	Enrollment	Time	Locations	Study Status
Refractory Multiple Myeloma Relapsed Multiple Myeloma	BIOLOGICAL: Manufactured Anti-BCMA CAR-T cells DRUG: Fludarabine DRUG: Cyclophosphamide	Thomas Martin, MD	PHASE1	5	2570	University of California, San Francisco, San Francisco, California, 94143, United States	ACTIVE_NOT_RECRUITING
Multiple Myeloma	DGICAL: Anti-BCMA CAR-T cells DRUG: Fludarabine DRUG: Cyclophosphamide DRUG: Immune inhi	Hrain Biotechnology Co., Ltd.	EARLY_PHASE1	10	847	Shanghai Changzheng Hospital, Shanghai, Shanghai, 200003, China	UNKNOWN
Myeloma-Multiple Myeloma, Plasma-Cell	amide DRUG: Fludarabine BIOLOGICAL: Anti-B Cell Maturation Antigen (BCMA) chimeric antigen rec	National Cancer Institute (NCI)	PHASE1	35	1570	National Institutes of Health Clinical Center, Bethesda, Maryland, 20892, United States	ACTIVE_NOT_RECRUITING
Multiple Myeloma	DRUG: T cell infusion agent targeting BCMA chimeric antigen receptor	PersonGen BioTherapeutics (Suzhou) Co., Ltd.	EARLY_PHASE1	3	70	No.3, Qingchun East Road, Hangzhou, Zhejiang, 310020, China	COMPLETED

Table 1: Features for ML Classification

Independent Variable	Dependent Variable				
Conditions					
Interventions					
Sponsor					
Phases	Study Status				
Enrollment					
Primary completion time					
Locations					

Table 2: Target Labels and Class Encoding

Study Status	Classification			
Active-not recruiting	0			
Completed	1			
Not yet recruting	2			
Recruiting	3			
Terminated	4			
Unknown	5			
Withdrawn	6			

Model Performance – Random Forest Algorithm

Objective: To forecast the final status of oncology clinical trials using Random Forest on structured metadata.

Performance Metrics (Train vs. Test):

- ✤ Accuracy: ~91% (Test)
- Precision, Recall, F1 Score, MCC all consistently high, indicating robust generalization and minimal overfitting.

Confusion Matrices:

- Train Set: High prediction accuracy across all status categories
- Test Set: Strong generalization with balanced classification across multiple trial statuses

Random Forest shows strong potential for real-world deployment in early-stage trial risk assessment and portfolio prioritization.

Top Predictive Features Identified by Random Forest

Top Feature Importances (Random Forest)

Enrolment is the most important feature in predicting study status

7

Key Takeaways & Clinical Relevance

- Successfully developed a machine learning model to forecast trial outcomes in oncology using publicly available metadata.
- Random Forest achieved high predictive performance (~91% accuracy), with robust generalization.
- Key predictors include: enrollment, completion time, and sponsor type all critical factors in feasibility and planning.
- This approach enables early identification of high-risk trials, helping sponsors and CROs save costs and improve development strategy.

- Early risk identification: Detect high-risk trials before resource commitment
- ✤ Trial design optimization: Tailor protocols, duration, and site strategy to boost feasibility
- Portfolio prioritization: Focus on trials with high predicted success likelihood
- Cost efficiency: Reduce sunk costs by deprioritizing likely-to-fail studies
- ✤ Data-driven decisions: Integrate model insights into strategic planning and investment

- ***** Expand modeling to other therapeutic areas (e.g., immunology, rare disease)
- ✤ Integrate unstructured data (e.g., trial protocols, publications) using NLP
- Develop an interactive dashboard for trial risk scoring and portfolio insights
- ✤ Offer this as a custom analytics service to pharma/CRO partners.

Website: www.mgintelligence.org

Email: gayathrikg@mgintelligence.org